viernes, 9 de julio de 2010

Proyecto elegido:

El proyecto elegido fue un "Molino de agua"

Por: Javiera miranda.

jueves, 8 de julio de 2010

Leva

El mecanismo de leva y seguidor se emplea para transformar el movimiento circular en un movimiento rectilíneo alternativo con unas características determinadas que dependen del perfil de la leva. La forma de la leva se diseña según el movimiento que se pretende para el seguidor. Para saber las características del movimiento del seguidor es necesario realizar una gráfica.
En los motores de combustión alternativos se emplean levas para efectuar la apertura y cierre de las válvulas que dejan entrar el combustible y salir los gases de la cámara de combustión.
Las levas pueden tener distintas formas, de disco, cilíndricas y de campana; la más común es la de disco.



Por: Camila Chamorro.

Excéntrica

EXCÉNTRICA

El mecanismo de excéntrica consta básicamente de dos elementos, la propia excéntrica y el seguidor. La excéntrica
es un disco cilíndrico que tiene un eje de giro desplazado un valor "e", llamado al
zada, respecto del centro del disco. El seguidor es una varilla que está en contacto permanente con la excéntrica y que recibe el movimiento de
esta. Con este ingenio conseguimos transformar el movimiento circular de la
excéntrica en movimiento rectilíneo alternativo del seguidor. El mecanismo no es reversible. La forma de la gráfica del movimiento d
escrito por el extremo del seguidor es la misma para cualquier excéntrica, solo varía la amplitud del movimie
nto, lo que llamamos alzada (e).



Por: Camila Chamorro.

Biela Manivela

BIELA MANIVELA
Este mecanismo está f
ormado por una manivela que tiene un movimiento circular y una barra llamada b
iela que está unida con articulaciones por un extremo a la manivela y por otro a un sistema de guiado (pistón)
que describe un movimiento rectilíneo alternativo. El mecanismo es reversible, el movimiento de entrada ta
nto puede ser circular de la manivela como rectilíneo alternativo de la guía de la biela.El sistema biela manivela tiene mucha importancia en los motore
s de explosión alternativos, así como antes también lo tuvo en la construcción de máquina
s de vapor.


Por: Camila Chamorro.

Tornillo Tuerca

TORNILLO TUERCA
Este mecanismo consta de un tornillo y una tuerca que tienen como objeto transformar el movimiento circular en rectilíneo. Si hacemos girar el tornillo o la tuerca manteniendo la orientación del otro, el que no gira avanza según la fórmula:




a=p·n
Siendo "p" el paso del tornillo y "n" el número de vueltas.
Este mecanismo tiene muchas aplicaciones en desplazamientos lineales lentos: portales automáticos, prensas, tornillos de banco, carros de máquin
as, etc.

Por: Camila Chamorro

Piñon Cremallera

PIÑÓN CREMALLERA
Un mecanismo piñón cremallera está formado por una rueda dentada que engrana con una barra también dentada. Es un mecanismo que transforma el movimiento circular de la rueda en rectilíneo de la cremallera o viceversa. Se emplea para dar movimiento, por ejemplo, a carros de máquinas, bandeja de un lector de CD, eje principal de un taladro, etc.
La relación de movimiento entre rueda y cremallera, llamando "
az" al desplazamiento de la cremallera por diente de la rueda y, "av" al desplazamiento de la cremallera por vuelta de la rueda, será:










Por: Camila Chamorro

jueves, 1 de julio de 2010

Transmiciones de movimientos:

Biela manivela.

Correas:

Rueda de friccion:

Tornillo tuerca:

Leva:

Piñon cremallera:

Rueda dentada:

Por: Javiera Miranda

Polipasto








Se llama polipasto a una máquina que se utiliza para levantar

o mover una carga con una gran ventaja mecánica, porque se necesita aplicar una fuerza

mucho menor al peso que hay que mover. Lleva dos o más poleas incorporadas

para minimizar el esfuerzo.

Estos mecanismos se utilizan mucho en los talleres o industrias que cargan elementos

y materiales muy pesados para hacer más rápida y fácil la elevación

y colocación de estas piezas en las diferentes

máquinas-herramientas que hay en los talleres o almacenes,

así como cargarlas y descargarlas de los camiones que las transportan.

Suelen estar sujetos a un brazo giratorio que hay acoplado a una máquina

, o pueden ser móviles guiados por rieles colocados en los techos

de las naves industriales.

Los polipastos tienen varios tamaños o potencia de elevación;

los pequeños se manipulan a mano y los más grandes llevan

incorporados un motor eléctrico.


Por: Camila Chamorro


Poleas Simples.

La polea simple se emplea para elevar pesos, consta de una sola rueda con la que hacemos pasar una puerta.

Se emplea para medir el sentido de la fuerza haciendo más cómodo el levantamiento de la carga entre otros motivos, por que nos ayudamos del peso del cuerpo para efectuar el esfuerzo, la fuerza que tenemos que hacer es la misma al peso a la que tenemos que levantar.

F=R

Hay dos clases de polea simple las cuales son:

Polea simple fija

La manera más sencilla de utilizar una polea es colgar un peso en un extremo de la cuerda, y tirar del otro extremo para levantar el peso.

Una polea simple fija no produce una ventaja mecánica: la fuerza que debe aplicarse es la misma que se habría requerido para levantar el objeto sin la polea. La polea, sin embargo, permite aplicar la fuerza en una dirección más conveniente.

Polea simple fija

Polea simple móvil

Una forma alternativa de utilizar la polea es fijarla a la carga, fijar un extremo de la cuerda al soporte, y tirar del otro extremo para levantar a la polea y la carga.

La polea simple móvil produce una ventaja mecánica: la fuerza necesaria para levantar la carga es justamente la mitad de la fuerza que habría sido requerida para levantar la carga sin la polea. Por el contrario, la longitud de la cuerda de la que debe tirarse es el doble de la distancia que se desea hacer subir a la carga.

Polea simple móvil

Por: Camila Chamorro


Tarea: Palancas.

Tipos de palanca

Las palancas se dividen en tres géneros, también llamados órdenes o clases, dependiendo de la posición relativa de los puntos de aplicación de la potencia y de la resistencia con respecto al fulcro (punto de apoyo). El principio de la palanca es válido indistintamente del tipo que se trate, pero el efecto y la forma de uso de cada uno cambian considerablemente.

Palanca de primera clase


En la palanca de primera clase, el fulcro se encuentra situado entre la potencia y la resistencia. Se caracteriza en que la potencia puede ser menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Para que esto suceda, dp ha de ser mayor que dr.

Tipos de palanca

Las palancas se dividen en tres géneros, también llamados órdenes o clases, dependiendo de la posición relativa de los puntos de aplicación de la potencia y de la resistencia con respecto alfulcro (punto de apoyo). El principio de la palanca es válido indistintamente del tipo que se trate, pero el efecto y la forma de uso de cada uno cambian considerablemente.

Palanca de primera clase

Palanca de primera clase.

En la palanca de primera clase, el fulcro se encuentra situado entre la potencia y la resistencia. Se caracteriza en que la potencia puede ser menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Para que esto suceda, dp ha de ser mayor que dr.

Cuando lo que se requiere es ampliar la velocidad transmitida a un objeto, o la distancia recorrida por éste, se ha de situar el fulcro más próximo a la potencia, de manera que dp sea menor que dr.

Ejemplos de este tipo de palanca son el balancín, las tijeras, las tenazas, los alicates o la catapulta (para ampliar la velocidad). En el cuerpo humano se encuentran varios ejemplos de palancas de primer género, como el conjunto tríceps braquial - codo - antebrazo.

Palanca de segunda clase

Palanca de segunda clase.

En la palanca de segunda clase, la resistencia se encuentra entre la potencia y el fulcro. Se caracteriza en que la potencia es siempre menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia.

Ejemplos de este tipo de palanca son la carretilla, los remos y el cascanueces.


Palanca de tercera clase

Palanca de tercera clase.

En la palanca de tercera clase, la potencia se encuentra entre la resistencia y el fulcro. Se caracteriza en que la fuerza aplicada es mayor que la obtenida; y se la utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida por él.

Ejemplos de este tipo de palanca son el quitagrapas y la pinza de cejas; y en el cuerpo humano, el conjunto codo - bíceps braquial - antebrazo, y la articulación temporomandibular.

Cuando lo que se requiere es ampliar la velocidad transmitida a un objeto, o la distancia recorrida por éste, se ha de situar el fulcro más próximo a la potencia, de manera que dp sea menor que dr.

Ejemplos de este tipo de palanca son el balancín, las tijeras, las tenazas, los alicates o la catapulta (para ampliar la velocidad). En el cuerpo humano se encuentran varios ejemplos de palancas de primer género, como el conjunto tríceps braquial - codo - antebrazo.

Palanca de segunda clase


En la palanca de segunda clase, la resistencia se encuentra entre la potencia y el fulcro. Se caracteriza en que la potencia es siempre menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia.

Ejemplos de este tipo de palanca son la carretilla, los remos y el cascanueces.




En la palanca de tercera clase, la potencia se encuentra entre la resistencia y el fulcro. Se caracteriza en que la fuerza aplicada es mayor que la obtenida; y se la utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida por él.

Ejemplos de este tipo de palanca son el quitagrapas y la pinza de cejas; y en el cuerpo humano, el conjunto codo - bíceps braquial - antebrazo, y la articulación temporomandibular.

Por: Camila Chamorro